54 research outputs found

    Nanohydrogel Formation within the Halloysite Lumen for Triggered and Sustained Release

    Get PDF
    © 2018 American Chemical Society. An easy strategy to obtain nanohydrogels within the halloysite nanotube (HNTs) lumen was investigated. Inorganic reverse micelles based on HNTs and hexadecyltrimethylammonium bromides were dispersed in chloroform, and the hydrophilic cavity was used as a nanoreactor to confine the gel formation based on alginate cross-linked by calcium ions. Spectroscopy and electron microscopy experiments proved the confinement of the polymer into the HNT lumen and the formation of calcium-mediated networks. Biological tests proved the biocompatibility of the hybrid hydrogel. The nanogel in HNTs was suitable for drug loading and sustained release with the opportunity of triggered burst release by chemical stimuli. Here, we propose a new strategy based on inorganic reverse micelles for nanohydrogel formation, which are suitable for industrial and biological applications as well as for selective and triggered adsorption and/or release

    О ЗНАЧЕНИИ ДОКУМЕНТОВ ГОСУДАРСТВЕННОГО АРХИВА РЕСПУБЛИКИ КРЫМ В ОСМЫСЛЕНИИ ИСТОРИЧЕСКИХ УРОКОВ ПЕРВОЙ МИРОВОЙ ВОЙНЫ

    Get PDF
    In the article published two unknown ranee arcival document, allowing newly to give a glance on the geopolitical context of the finishing stage of First world war, coinciding in Russia with a period between February and October revolutions.В статье публикуются два неизвестных ранее архивных документа, позволяющих по-новому взглянуть на геополитический контекст завершающего этапа Первой мировой войны, совпавшего в России с периодом между Февральской и Октябрьской революциями

    Fabrication of Magnetically Modified Chlorella pyrenoidosa Microalgae Using Poly(diallyldimethyl ammonium)-stabilised Magnetic Nanoparticles

    Get PDF
    © 2016, Springer Science+Business Media New York.We report fabrication of magnetically responsive Chlorella pyrenoidosa cells using poly(diallyldimethyl ammonium chloride)-stabilised iron oxide nanoparticles. The nanoparticles were characterised using transmission electron microscopy and dark-field microscopy. The interaction of magnetic nanomaterials with C. pyrenoidosa cells was studied, and high biocompability of these nanomaterials was demonstrated

    Cell surface engineering with polyelectrolyte-stabilized magnetic nanoparticles: A facile approach for fabrication of artificial multicellular tissue-mimicking clusters

    Get PDF
    © 2015, Tsinghua University Press and Springer-Verlag Berlin Heidelberg. Regenerative medicine requires new ways to assemble and manipulate cells for fabrication of tissue-like constructs. Here we report a novel approach for cell surface engineering of human cells using polymer-stabilized magnetic nanoparticles (MNPs). Cationic polyelectrolyte-coated MNPs are directly deposited onto cellular membranes, producing a mesoporous semi-permeable layer and rendering cells magnetically responsive. Deposition of MNPs can be completed within minutes, under cell-friendly conditions (room temperature and physiologic media). Microscopy (TEM, SEM, AFM, and enhanced dark-field imaging) revealed the intercalation of nanoparticles into the cellular microvilli network. A detailed viability investigation was performed and suggested that MNPs do not inhibit membrane integrity, enzymatic activity, adhesion, proliferation, or cytoskeleton formation, and do not induce apoptosis in either cancer or primary cells. Finally, magnetically functionalized cells were employed to fabricate viable layered planar (two-cell layers) cell sheets and 3D multicellular spheroids. [Figure not available: see fulltext.

    Uptake of halloysite clay nanotubes by human cells: Colourimetric viability tests and microscopy study

    Get PDF
    © 2018 This study is a systemic investigation of the uptake and toxicity of halloysite nanotubes using human adenocarcinoma epithelial cells (A549). A549 cells were chosen as a popular model of cancer cells extensively studied in nanotoxicity and drug delivery research. The adverse effects of a range of halloysite concentrations were evaluated. The viability of A549 cells was determined using several colourimetric assays. Dark-field microscopy was used to visualize the uptake and distribution of halloysite nanotubes in cells. The morphology of the cells was evaluated using dark-field, transmission electron and atomic force microscopies. The results showed that halloysite had a dose-dependent effect on human cells at concentrations of 5–900 μg per 105 cells in the MTT assay. The reduced toxicity of halloysite nanotubes at lower concentrations (5–75 μg per 105 cells) was additionally supported by the results of other colorimetric assays. Microscopy assays have demonstrated that the nanotubes, though affecting the biochemical processes, do not alter the morphology of the cells and do not penetrate into the nuclei

    Development of Biocompatible Glass Substrate With Surface Nanotopography

    Full text link
    The work was performed according to the Russian Government Program of Competitive Growth of Kazan Federal University and funded by the Russian Presidential grant MК-4498.2018.

    Halloysite nanotubes: Controlled access and release by smart gates

    Get PDF
    © 2017 by the authors. Licensee MDPI, Basel, Switzerland. Hollow halloysite nanotubes have been used as nanocontainers for loading and for the triggered release of calcium hydroxide for paper preservation. A strategy for placing end-stoppers into the tubular nanocontainer is proposed and the sustained release from the cavity is reported. The incorporation of Ca(OH) 2 into the nanotube lumen, as demonstrated using transmission electron microscopy (TEM) imaging and Energy Dispersive X-ray (EDX) mapping, retards the carbonatation, delaying the reaction with CO 2 gas. This effect can be further controlled by placing the end-stoppers. The obtained material is tested for paper deacidification. We prove that adding halloysite filled with Ca(OH) 2 to paper can reduce the impact of acid exposure on both the mechanical performance and pH alteration. The end-stoppers have a double effect: they preserve the calcium hydroxide from carbonation, and they prevent from the formation of highly basic pH and trigger the response to acid exposure minimizing the pH drop-down. These features are promising for a composite nanoadditive in the smart protection of cellulose-based materials

    Targeting microbial biofilms using Ficin, a nonspecific plant protease

    Get PDF
    © The Author(s) 2017.Biofilms, the communities of surface-attached bacteria embedded into extracellular matrix, are ubiquitous microbial consortia securing the effective resistance of constituent cells to environmental impacts and host immune responses. Biofilm-embedded bacteria are generally inaccessible for antimicrobials, therefore the disruption of biofilm matrix is the potent approach to eradicate microbial biofilms. We demonstrate here the destruction of Staphylococcus aureus and Staphylococcus epidermidis biofilms with Ficin, a nonspecific plant protease. The biofilm thickness decreased two-fold after 24 hours treatment with Ficin at 10 μg/ml and six-fold at 1000 μg/ml concentration. We confirmed the successful destruction of biofilm structures and the significant decrease of non-specific bacterial adhesion to the surfaces after Ficin treatment using confocal laser scanning and atomic force microscopy. Importantly, Ficin treatment enhanced the effects of antibiotics on biofilms-embedded cells via disruption of biofilm matrices. Pre-treatment with Ficin (1000 μg/ml) considerably reduced the concentrations of ciprofloxacin and bezalkonium chloride required to suppress the viable Staphylococci by 3 orders of magnitude. We also demonstrated that Ficin is not cytotoxic towards human breast adenocarcinoma cells (MCF7) and dog adipose derived stem cells. Overall, Ficin is a potent tool for staphylococcal biofilm treatment and fabrication of novel antimicrobial therapeutics for medical and veterinary applications

    Fluorescence and cytotoxicity of cadmium sulfide quantum dots stabilized on clay nanotubes

    Get PDF
    © 2018 by the authors. Licensee MDPI, Basel, Switzerland. Quantum dots (QD) are widely used for cellular labeling due to enhanced brightness, resistance to photobleaching, and multicolor light emissions. CdS and CdxZn1−xS nanoparticles with sizes of 6–8 nm were synthesized via a ligand assisted technique inside and outside of 50 nm diameter halloysite clay nanotubes (QD were immobilized on the tube’s surface). The halloysite– QD composites were tested by labeling human skin fibroblasts and prostate cancer cells. In human cell cultures, halloysite–QD systems were internalized by living cells, and demonstrated intense and stable fluorescence combined with pronounced nanotube light scattering. The best signal stability was observed for QD that were synthesized externally on the amino-grafted halloysite. The best cell viability was observed for CdxZn1−xS QD immobilized onto the azine-grafted halloysite. The possibility to use QD clay nanotube core-shell nanoarchitectures for the intracellular labeling was demonstrated. A pronounced scattering and fluorescence by halloysite–QD systems allows for their promising usage as markers for biomedical applications

    Binase Immobilized on halloysite nanotubes exerts enhanced cytotoxicity toward human colon adenocarcinoma cells

    Get PDF
    © 2017 Khodzhaeva, Makeeva, Ulyanova. Many ribonucleases (RNases) are considered as promising tools for antitumor therapy because of their selective cytotoxicity toward cancer cells. Binase, the RNase from Bacillus pumilus, triggers apoptotic response in cancer cells expressing RAS oncogene which is mutated in a large percentage of prevalent and deadly malignancies including colorectal cancer. The specific antitumor effect of binase toward RAS-transformed cells is due to its direct binding of RAS protein and inhibition of downstream signaling. However, the delivery of proteins to the intestine is complicated by their degradation in the digestive tract and subsequent loss of therapeutic activity. Therefore, the search of new systems for effective delivery of therapeutic proteins is an actual task. This study is aimed to the investigation of antitumor effect of binase immobilized on natural halloysite nanotubes (HNTs). Here, we have developed the method of binase immobilization on HNTs and optimized the conditions for the enzyme loading and release (i); we have found the non-toxic concentration of pure HNTs which allows to distinguish HNTs- and binase-induced cytotoxic effects (ii); using dark-field and fluorescent microscopy we have proved the absorption of binase-loaded HNTs on the cell surface (iii) and demonstrated that binase-halloysite nanoformulations possessed twice enhanced cytotoxicity toward tumor colon cells as compared to the cytotoxicity of binase itself (iv). The enhanced antitumor activity of biocompatible binase-HNTs complex confirms the advisability of its future development for clinical practice
    corecore